AIPMT - 2015
 (Physics, Chemistry and Biology)
 Code - E

Time: 3 hrs
Total Marks: 720

General Instructions:

1. The Answer sheet is inside this Text booklet. When you are directed to open the text booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
2. The test is of 3 hours duration and consists of 180 questions. Each question carries 3 marks. For each correct response the candidate will get 4 marks. For each incorrect response, one mark will be deducted. The maximum marks are 720.
3. Use Blue/Black ball point pen only for writing particulars on this page/marking responses.
4. Rough work is to be done on the space provided for this purpose in the text booklet only.
5. On completion of the test, the candidate must handover the answer sheet to the invigilator in the room/Hall. The candidates are allowed to take away this text booklet with them.
6. Make sure that the CODE printed on side-2 of the answer sheet is the same as that on this booklet, In case of discrepancy, the candidate should immediately report the matter to the invigilator for the replacement of both the test Booklet and the Answer Sheet.
7. The candidates should ensure that the Answer sheet is not folded. Do not make any stray marks on the Answer sheet. Do not write your roll no. anywhere else except in the specified space in the Test booklet/Answer Sheet.
8. Use of white fluid for correction is not permissible on the Answer Sheet.
9. If force (E), velocity (V) and time (T) are chosen as fundamental quantities, the dimensional formula of surface tension will be
(1) $\left[E^{-2} \mathrm{~T}^{-1}\right]$
(2) $\left[E V^{-1} T^{-2}\right]$
(3) $\left[\mathrm{E} \mathrm{V}^{-2} \mathrm{~T}^{-2}\right]$
(4) $\left[\mathrm{E}^{-2} \mathrm{~V}^{-1} \mathrm{~T}^{-3}\right]$
10. A Ship A is moving westwards with a speed of $10 \mathrm{~km} \mathrm{~h}^{-1}$ and a ship $B 100 \mathrm{~km}$ south of A is moving northwards with a speed of $10 \mathrm{~km} \mathrm{~h}^{-1}$. The time after which the distance between them becomes shortest is
(1) 0 h
(2) 5 h
(3) $5 \sqrt{2} h$
(4) $10 \sqrt{2} h$
11. A particle of unit mass undergoes one-dimensional motion such that its velocity varies according to
$v(x)=\beta x^{-2 n}$
where β and n are constants and x is the position of the particle. The acceleration of the particle as a function of x is given by
(1) $-2 n \beta^{2} x^{-2 n-1}$
(2) $-2 n \beta^{2} x^{-4 n-1}$
(3) $-2 \beta^{2} x^{-2 n+1}$
(4) $-2 n \beta^{2} e^{-4 n+1}$
12. Three blocks A, B and C, of masses $4 \mathrm{~kg}, 2 \mathrm{~kg}$ and 1 kg , respectively, are in contact on a frictionless surface, as shown. If a force of 14 N is applied on the 4 kg block, then the contact force between A and B is

(1) 2 N
(2) 6 N
(3) 8 N
(4) 18 N
13. A block A of mass m_{1} rests on a horizontal table. A light string connected to it passes over a frictionless pulley at the edge of table and from its other end another block B of mass m_{2} is suspended. The coefficient of kinetic friction between the block and the table is μ_{k}. When the block A is sliding on the table, the tension in the string is
(1) $\left(m_{2}+\mu_{k} \underline{m_{1}}\right) g$

$$
\left(m_{1}+m_{2}\right)
$$

(2) $\left(m_{2}-\mu_{k} m_{1}\right) g$
$\left(m_{1}+m_{2}\right)$
(3) $\frac{m_{1} m_{2}\left(1+\mu_{k}\right) g}{\left(m_{1}+m_{2}\right)}$
(4) $\frac{m_{1} m_{2}\left(1-\mu_{k}\right) g}{\left(m_{1}+m_{2}\right)}$
6. Two similar springs P and Q have spring constants K_{P} and K_{Q}. They are stretched, first by the same amount (case a), then y the same force (case b). The work done by the springs W_{P} and W_{Q} are related as in case (a) and case (b), respectively:
(1) $W_{P}=W_{Q} ; W_{P}>W_{Q}$
(2) $\mathrm{W}_{\mathrm{P}}=\mathrm{W}_{\mathrm{Q}} ; \mathrm{W}_{\mathrm{P}}=\mathrm{W}_{\mathrm{Q}}$
(3) $W_{P}>W_{Q} ; W_{Q}>W_{P}$
(4) $W_{P}<W_{Q} ; W_{Q}<W_{P}$
7. A block of mass 10 kg , moving in x direction with a constant speed of $10 \mathrm{~ms}^{-1}$ is subjected to a retarding force $\mathrm{F}=0.1 \mathrm{x} \mathrm{J} / \mathrm{m}$ during its travel from $\mathrm{x}=20 \mathrm{~m}$ to 30 m . Its final KE will be
(1) 475 J
(2) 450 J
(3) 275 J
(4) 250 J
8. A particle of mass m is driven by a machine that delivers a constant power k watts. If the particle starts from rest the force on the particle at time t is
(1) $V^{\underline{m k}} 2_{-} t^{-1 / 2}$
(2) $\sqrt{\mathrm{mk}^{-1 / 2}}$
(3) $\sqrt{2 m k} t^{-1 / 2}$
(4) ${ }^{1} \underset{2}{ } \sqrt{ } \mathrm{mk} \mathrm{t}^{-1 / 2}$
9. Two particles of masses m_{1}, m_{2} move with initial velocities u_{1} and u_{2}. On collision, one of the particles get excited to higher level, after absorbing energye. If final velocities of particles be v_{1} and v_{2} then we must have
(1) $m_{1}^{2} u_{1}+m^{2} u_{2}-\varepsilon=m_{1}^{2} v_{1}+m^{2} v_{2}$
(2) $\stackrel{1}{1}_{2 m_{1} u_{1}{ }^{2}+\underline{1}_{2} \mathrm{~m}_{2} \mathrm{u}^{2}{ }_{2}=\underline{1}_{2 \mathrm{~m}_{1} \mathrm{v}_{1}{ }^{2}+{ }^{1}}^{2} 2 \mathrm{~m}_{2} \mathrm{v}^{2}-\varepsilon}$

10. The rod of weight W is supported by two parallel knife edges A and B and is in equilibrium in a horizontal position. The knives are at a distance d from each other. The centre of mass of the rod is at distance x from A. The normal reaction on A is
(1) $\frac{W x}{} d$
(2) $\frac{W d}{X}$
(3) $W(d-x)$
x
(4) $\underline{W}(d-x)$ d
11. A mass m moves in a circle on a smooth horizontal plane with velocity $v o$ at a radius R_{0}. The mass is attached to a string which passes through a smooth hole in the plane as shown

The tension in the string is increased gradually and finally moves in a circle of radius
$\mathrm{R}_{2^{0}}$. The final value of the kinetic energy is
(1) $\mathrm{mv}^{2}{ }_{0}$
(2) ${ }^{1} 4 \mathrm{mv}^{2}{ }_{0}$
(3) $2 \mathrm{mv}^{2} 0$
(4) $\underline{1}_{2} \mathrm{mv}^{2}{ }_{0}$
12. Three identical spherical shells, each of mass m and radius r placed as shown in figure. Consider an axis XX ' which is touching to two shells and passing through diameter of third shell.
Moment of inertia of the system consisting of these three spherical shells about XX' axis is

(1) $\underline{11}_{5} \mathrm{mr}^{2}$
(2) $3 \mathrm{mr}^{2}$
(3) $\underline{16}_{5} \mathrm{mr}^{2}$
(4) $4 \mathrm{mr}^{2}$
13. Kepler's third law states that square of period of revolution (T) of a planet around the Sun is proportional to third power of average distance r between Sun and planet i.e. $\mathrm{T}^{2}=\mathrm{Kr}^{3}$ here K is constant
If the masses of Sun and planet are M and m , respectively, then as per Newton's law of gravitation, force of attraction between them is
$\mathrm{F}=\underline{\mathrm{GMm}}_{\mathrm{r} 2}$, hereGisgravitational constant. The relation between G and K is described as
(1) $\mathrm{GK}=4 \pi 2$
(2) $\mathrm{GMK}=4 \pi^{2}$
(3) $\mathrm{K}=\mathrm{G}$

1
(4) K = G
14. Two spherical bodies of mass M and 5 M and radii R and $2 R$ are released in free space with initial separation between their centres equal to 12 R . If they attract each other due to gravitational force only, then the distance covered by the smaller body before collision is
(1) 2.5 R
(2) 4.5 R
(3) 7.5 R
(4) 1.5 R
15. On observing light from three different starts P, Q and R, it was found that intensity of violet colour is maximum in the spectrum of P, the intensity of green colour is maximum in the spectrum of R and the intensity of red colour is maximum in the spectrum of Q. If T_{P}, T_{Q} and T_{R} are the respective absolute temperatures of P, Q and R, then it can be concluded from the above observation that
(1) $\mathrm{T}_{\mathrm{P}}>\mathrm{T}_{\mathrm{Q}}>\mathrm{T}_{\mathrm{R}}$
(2) $\mathrm{T}_{\mathrm{P}}>\mathrm{T}_{\mathrm{R}}>\mathrm{T}_{\mathrm{Q}}$
(3) $\mathrm{T}_{\mathrm{P}}<\mathrm{T}_{\mathrm{R}}<\mathrm{T}_{\mathrm{Q}}$
(4) $\mathrm{T}_{\mathrm{P}}<\mathrm{T}_{\mathrm{Q}}<\mathrm{T}_{\mathrm{R}}$
16. The approximate depth of an ocean is 2700 m . the compressibility of water is $45.4 \times$ $10^{-11} \mathrm{~Pa}^{-1}$ and density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. What fractional compression of water will be obtained at the bottom of the ocean?
(1) 0.8×10^{-2}
(2) 1.0×10^{-2}
(3) 1.2×10^{-2}
(4) 1.4×10^{-2}
17. The two ends of a metal rod maintained at temperatures $100^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$. The rate of heat flow in the rod is found to be $4.0 \mathrm{~J} / \mathrm{s}$. If the ends are maintained at temperatures $200^{\circ} \mathrm{C}$ and $210^{\circ} \mathrm{C}$, the rate of heat flow will be
(1) $44.0 \mathrm{~J} / \mathrm{s}$
(2) $16.8 \mathrm{~J} / \mathrm{s}$
(3) $8.0 \mathrm{~J} / \mathrm{s}$
(4) $4.0 \mathrm{~J} / \mathrm{s}$
18. A wind with speed $40 \mathrm{~m} / \mathrm{s}$ blows parallel to the roof of a house. The area of the roof is $250 \mathrm{~m}^{2}$. Assuming that the pressure inside the house is atmospheric pressure, the force exerted by the wind on the roof and the direction of the force will be
($\mathrm{P}_{\text {air }}=1.2 \mathrm{~kg} / \mathrm{m}^{3}$)
(1) $4.8 \times 10^{5} \mathrm{~N}$, downwards
(2) $4.8 \times 10^{5} \mathrm{~N}$, upwards
(3) $2.4 \times 10^{5} \mathrm{~N}$, upwards
(4) $2.4 \times 10^{5} \mathrm{~N}$, downwards
19. Figure below shows two paths that may be taken by a gas to go from a state A to a state C.

In process $\mathrm{AB}, 400 \mathrm{~J}$ of heat is added to the system and in process $\mathrm{BC}, 100 \mathrm{~J}$ of heat is added to the system. The heat absorbed by the system in the process $A C$ will be
(1) 380 J
(2) 500 J
(3) 460 J
(4) 300 J
20.A Carnot engine having an efficiency of $\eta=10^{1}$ as heat engine is used as a refrigerator. If the work done on the system is 10 J , the amount of energy absorbed from the reservoir at lower temperature is
(1) 100 J
(2) 99 J
(3) 90 J
(4) 1 J
21. One mole of an ideal diatomic gas undergoes a transition from A to B along a path $A B$ as shown in the figure,

The change in internal energy of the gas during the transition is
(1) 20 kJ
(2) -20 kJ
(3) 20 J
(4) -12 kJ
22. The ratio of the specific heats $\frac{C_{P}}{}=\gamma$ in terms of degrees of freedom (n) is given by C_{v}
(1) ()$_{1+} \underline{1}_{n}$
(2) $\mid 1+\underline{n}_{3}$
(3) $\left\{\begin{array}{l}1+n^{2} \\ l)\end{array}\right.$
(4) $\left\lvert\, \begin{aligned} & 1+\underline{n}_{2} \\ & \lfloor)\end{aligned}\right.$
23. When two displacements represented by $y_{1}=a \sin (\omega t)$ and $y_{2}=b \cos (\omega t)$ are superimposed the motion is
(1) Not a simple harmonic
(2) Simple harmonic with amplitude $\underline{\mathrm{a}}_{\mathrm{b}}$
(3) Simple harmonic with amplitude $\sqrt{a^{2}+b^{2}}$
(4) Simple harmonic with amplitude $(a+b)$
24.A particle is executing SHM along a straight line. Its velocities at distances x_{1} and x_{2} from the mean position are V_{1} and V_{2}, respectively. Its time period is
(1) $2 \pi \sqrt{\frac{x^{2}+x^{2}}{\frac{1}{V_{1}^{2}+V_{2}}}{ }^{2}}$
(2) $2 \pi \sqrt{\frac{X^{2}-X^{2}}{\frac{V^{2}}{2}}} \begin{aligned} & \frac{V_{1}^{2}-V_{2}}{2}\end{aligned}$
(3) $2 \pi \sqrt{\frac{V^{2}+V^{2}}{1} 2} \sqrt{X_{1}^{2}+X^{2} 2}$
(4) $2 \pi \sqrt{\frac{V^{2}-V^{2}}{1-2}} \sqrt{\mathrm{X}_{1}{ }^{2}-\mathrm{X}^{2}{ }^{2}}$
25. The fundamental frequency of a closed organ pipe of length 20 cm is equal to the second overtone of an organ pipe open at both the ends. The length of organ pipe open at both ends is
(1) 80 cm
(2) 100 cm
(3) 120 cm
(4) 140 cm
26. A parallel plate air capacitor of capacitance C is connected to a cell of emf V and then disconnected from it. A dielectric slab of dielectric constant K which can just fill the air gap of the capacitor is now inserted in it. Which of the following is incorrect?
(1) The potential difference between the plates decrease K times
(2) The energy stored in the capacitor decreases K times
(3) The change in energy stored is $\frac{1_{C V}}{2}\left(\frac{1}{\mathrm{~K}}-1\right)$
(4) The charge on the capacitor is not conserved.
27. The electric field in a certain region is acting radially outward and is given by $\mathrm{E}=\mathrm{Ar}$. A charge contained in a sphere of radius ' a ' centred at the origin of the field, will be given by
(1) $4 \pi \varepsilon_{0} \mathrm{Aa}^{2}$
(2) $A \varepsilon_{0} a^{2}$
(3) $4 \pi \varepsilon_{0} \mathrm{Aa}^{3}$
(4) $\varepsilon_{0} \mathrm{Aa}^{3}$
28. A potentiometer wire has length 4 m and resistance 8Ω. The resistance that must be connected in series with the wire and an accumulator of emf 2 V , so as to get a potential gradient 1 mV per cm on the wire is
(1) 32Ω
(2) 40Ω
(3) 44Ω
(4) 48Ω
29. A, B and C are voltmeters of resistance $R, 1.5 R$ and $3 R$, respectively, as shown in the figure. When some potential difference is applied between X and Y, the voltmeter readings are V_{A}, V_{B} and V_{c}, respectively, then

(1) $V_{A}=V_{B}=V_{c}$
(2) $V_{A} \neq V_{B}=V_{C}$
(3) $V_{A}=V_{B} \neq V_{C}$
(4) $V_{A} \neq V_{B} \neq V_{C}$
30. Across a metallic conductor of non-uniform cross section a constant potential difference is applied. The quantity which remains constant along the conductor is
(1) current density
(2) current
(3) drift velocity
(4) electric field
31. A wire carrying current I has the shape as shown in adjoining figure. Linear parts of the wire are very long and parallel to X -axis, while semicircular portion of radius R is lying in $Y-Z$ plane. Magnetic field at point O is

(1) $\vec{B}=4^{\mu} \pi^{0} R^{I}(\pi i+2 k)$
(2) $\vec{B}=-4^{\mu} \pi^{0} \hat{R}^{I}(\pi i-2 \hat{k})$
(3) $\vec{B}=-4^{\mu} \pi^{0} R^{\hat{I}}(\pi i+2 k)$
(4) $\vec{B}=4^{\mu} \pi^{0} R^{I}(\pi i-2 k)$
32. An electron moving in a circular orbit of radius r makes n rotations per second. The magnetic field produced at the centre has magnitude:
(1) $\underline{\mu}_{2 \pi r}^{\mu_{0}}$
(2) Zero
(3) $\frac{\mu_{0} n_{2} \mathrm{e}}{\mathrm{r}}$
(4) $\underline{\mu}_{0} \underline{n e}$
33.A conducting square frame of side ' a ' and a long straight wire carrying current I are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity ' V '. The emf induced in the frame will be proportional to

(1) $\frac{1}{X_{2}}$

1
(2) $\overline{(2 x-a)^{2}}$
(3) $\overline{(2 x+a)^{2}}$
(4)
(2x-a)(2x+a)
34. A resistance ' R ' draws power ' P ' when connected to an AC source. If an inductance is now placed in series with the resistance, such that the impedance of the circuit becomes ' Z ', the power drawn will be
(1) $\mathrm{P}(\underline{R})^{2}$

(2) $P \sqrt{\underline{R}_{Z}}$
(3) $\mathrm{P}\left(\begin{array}{l}\mathrm{R} \\ \mid \\ \mid \\ \mathrm{Z}\end{array}\right)$
(4) P
35. A radiation of energy ' E ' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is ($\mathrm{C}=$ velocity of light):
(1) C E
(2) ${ }^{2 E} C$
(3) $\stackrel{2 E}{ }_{C_{2}}$
(4) C^{E}
36. Two identical thin plano-convex glass lenses (refractive index 1.5) each having radius of curvature of 20 cm are placed with their convex surfaces in contact at the centre. The intervening space is filled with oil of refractive index 1.7. The focal length of the combination is
(1) -20 cm
(2) -25 cm
(3) -50 cm
(4) 50 cm
37. For a parallel beam of monochromatic light of wavelength ' λ ', diffraction is produced by a single lit whose width ' a ' is of the order of the wavelength of the light. If ' D ' is the distance of the screen from the slit, the width of the central maxima will be
(1) $2 D_{a} \lambda$
(2) $\mathrm{D}_{\mathrm{a}} \lambda$
(3) $\frac{\mathrm{Da}}{\lambda}$
(4) $\frac{2 \mathrm{Da}}{} \lambda$
38. In a double slit experiment, the two slits are 1 mm apart and the screen is placed 1 m away. A monochromatic light of wavelength 500 nm is used. What will be the width of each slit for obtaining ten maxima of double slit within the central maxima of single slit pattern?
(1) 0.2 mm
(2) 0.1 mm
(3) 0.5 mm
(4) 0.02 mm
39. The refracting angle of a prism is A, and refractive index of the material of the prism is $\cot (A / 2)$. The angle of minimum deviation is
(1) $180^{\circ}-3 \mathrm{~A}$
(2) $180^{\circ}-2 \mathrm{~A}$
(3) $90^{\circ}-\mathrm{A}$
(4) $180^{\circ}+2 \mathrm{~A}$
40. A certain metallic surface is illuminated with monochromatic light of wavelength λ. The stopping potential for photo-electric current for this light is $3 \mathrm{~V}_{0}$. If the same surface is illuminated with light of wavelength 2λ, the stopping potential is V_{0}. The threshold wavelength for this surface for photo-electric effect is
(1) 6λ
(2) 4λ
(3) $4^{\underline{\lambda}}$
(4) $6^{\underline{\lambda}}$
41. Which of the following figures represent the variation of particle momentum and the associated de-Broglie wavelength?
(1)

(2)

(3)

(4)

42. Consider $3^{\text {rd }}$ orbit of He^{+}(Helium), using non-relativistic approach, the speed of electron in this orbit will be [given $\mathrm{K}=9 \times 10^{9}$ constant, $\mathrm{Z}=2$ and h (Planck's constant) $\left.=6.6 \times 10^{-34} \mathrm{Js}\right]$
(1) $2.92 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(2) $1.46 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(3) $0.73 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(4) $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
43. If radius of the $\frac{27}{} 13$ Al nucleus is taken to be Rat then the radius of $\frac{125}{53 T e}$ nucleus is nearly:
(1) $\binom{\underline{53}}{13}^{1 / 3} \mathrm{R}_{\mathrm{Al}}$
(2) $\underline{5} R$

3 al
(3) 3 R

5 al
(4) $\binom{\underline{13}}{53}^{1 / 3 /} R_{A l}$
44.If in a p-n junction, a square input signal of 10 V is applied, as shown

Then the output across R. will be
(1)

(2)

(3)

(4)

45. Which logic gate is represented by the following combination of logic gates?

(1) OR
(2) NAND
(3) AND
(4) NOR
46. Which of the following species contains equal number of σ and π-bonds?
(1) HCO_{3}^{-}
(2) XeO_{4}
(3) $(\mathrm{CN})_{2}$
(4) $\mathrm{CH}_{2}(\mathrm{CN})_{2}$
47. The species $\mathrm{Ar}, \mathrm{K}^{+}$and Ca^{2+} contain the same number of electrons. In which order do their radii increase?
(1) $\mathrm{Ar}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
(2) $\mathrm{Ca}^{2+}<\mathrm{Ar}<\mathrm{K}^{+}$
(3) $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Ar}$
(4) $\mathrm{K}^{+}<\mathrm{Ar}<\mathrm{Ca}^{2+}$
48. The function of "Sodium pump" is a biological process operating in each and every cell of all animals. Which of the following biologically important ions is also a constituent of this pump?
(1) Ca^{2+}
(2) Mg^{2+}
(3) K^{+}
(4) Fe^{2+}
49. "Metals are usually not found as nitrates in their ores". Out of the following two (a and b) reasons which is/are true for the above observation?
(a) Metal nitrates are highly unstable
(b) Metal nitrates are highly soluble in water
(1) a and b are true
(2) a and b are false
(3) a is false but b is true
(4) a is true but b is false
50. Solubility of the alkaline earth's metal sulphates in water decreases in the sequence :
(1) $\mathrm{Mg}>\mathrm{Ca}>\mathrm{Sr}>\mathrm{Ba}$
(2) $\mathrm{Ca}>\mathrm{Sr}>\mathrm{Ba}>\mathrm{Mg}$
(3) $\mathrm{Sr}>\mathrm{Ca}>\mathrm{Mg}>\mathrm{Ba}$
(4) $\mathrm{Ba}>\mathrm{Mg}>\mathrm{Sr}>\mathrm{Ca}$
51. Because of lanthanoid contraction, which of the following pairs of elements have nearly same atomic radii? (Numbers in the parenthesis are atomic numbers).
(1) Ti (22) and Zr (40)
(2) Zr (40) and $\mathrm{Nb}(41)$
(3) $\mathrm{Zr}(40)$ and $\mathrm{Hf}(72)$
(4) $\mathrm{Zr}(40)$ and $\mathrm{Ta}(73)$
52. Which of the following processes does not involve oxidation of iron?
(1) Rusting of iron sheets
(2) Decolourisation of blue CuSO_{4} solution by iron
(3) Formation of $\mathrm{Fe}(\mathrm{CO})_{5}$ from Fe
(4) Liberation of H_{2} from steam by iron at high temperature
53. Which of the following pairs of ions are isoelectronic and isostructural?
(1) $\mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}$
(2) $\mathrm{ClO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}$
(3) $\mathrm{SO}_{3}{ }^{2-}, \mathrm{NO}_{3}{ }^{-}$
(4) $\mathrm{ClO}_{3}{ }^{-} \mathrm{SO}_{3}{ }^{2-}$
54. Which of the following options represents the correct bond order?
(1) $\mathrm{O}_{2}->\mathrm{O}_{2}>\mathrm{O}_{2}{ }^{+}$
(2) $\mathrm{O}_{2}^{-}<\mathrm{O}_{2}<\mathrm{O}_{2}{ }^{+}$
(3) $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}<\mathrm{O}_{2}{ }^{+}$
(4) $\mathrm{O}_{2}-<\mathrm{O}_{2}>\mathrm{O}_{2}{ }^{+}$
55. Nitrogen dioxide and sulphur dioxide have some properties in common. Which property is shown by one of these compounds, but not by the other?
(1) forms 'acid - rain'
(2) is a reducing agent
(3) is soluble in water
(4) is used as a food-preservative
56. Maximum bond angle at nitrogen is present in which of the following
(1) NO_{2}
(2) $\mathrm{NO}_{2}-$
(3) $\mathrm{NO}_{2}{ }^{+}$
(4) $\mathrm{NO}_{3}{ }^{-}$
57. Magnetic moment 2.84 B.M. is given by:
(At. nos. $\mathrm{Ni}=28, \mathrm{Ti}=22, \mathrm{Cr}=24, \mathrm{Co}=27$)
(1) Ni_{2+}
(2) Ti3+
(3) Cr_{2+}
(4) Co^{2+}
58. Cobalt (III) Chloride forms several octahedral complexes with ammonia. Which of the following will not give test for chloride ions with silver nitrate at $25^{\circ} \mathrm{C}$?
(1) $\mathrm{CoCl}_{3} 3 \mathrm{NH}_{3}$
(2) $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$
(3) $\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$
(4) $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$
59. Which of these statements about $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ is true?
(1) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has no unpaired electrons and will be in a low-spin configuration
(2) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons and will be in low-spin configuration
(3) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons and will be in a high-spin configuration
(4) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has no unpaired electrons and will e in a high-spin configuration
60.The activation energy of a reaction can be determined from the slope of which of the following graphs?
(1) In K vs. T
(2) $\stackrel{\operatorname{InK}}{=}$ v vs.T
(3) InKvs. T^{1}
(4) InK^{T} vs. T^{1}
61. Which one is not equal to zero for an ideal solution?
(1) $\Delta \mathrm{H}_{\text {mix }}$
(2) $\Delta \mathrm{S}_{\text {mix }}$
(3) $\Delta V_{\text {mix }}$
(4) $\Delta P=P_{\text {observed }}-P_{\text {Raoult }}$
62. A mixture of gases contains H_{2} and O_{2} gases in the ratio of $1: 4(\mathrm{w} / \mathrm{w})$. What is the molar ratio of the two gases in the mixture?
(1) $1: 4$
(2) $4: 1$
(3) $16: 1$
(4) $2: 1$
63.A given metal crystallizes out with a cubic structure having edge length of 361 pm . If there are four metal atoms in one unit cell, what is the radius of one atom?
(1) 40 pm
(2) 127 pm
(3) 80 pm
(4) 108 pm
64. When initial concentration of a reactant is doubled in a reaction, its half - life period is not affected. The order of the reaction is :
(1) Zero
(2) First
(3) Second
(4) More than zero but less than first
65. If the value of an equilibrium constant for a particular reaction is 1.6×10^{12}, then at equilibrium the system will contain
(1) All reactants
(2) Mostly reactants
(3) Mostly products
(4) Similar amounts of reactants and products
66. A device that converts energy of combustion of fuels like hydrogen and methane, directly into electrical energy is known as :
(1) Fuel cell
(2) Electrolytic cell
(3) Dynamo
(4) Ni-Cd cell
67. The boiling point of $0.2 \mathrm{~mol} \mathrm{~kg}^{-1}$ solution of X in water is greater than equimolal solution of Y in water. Which one of the following statements is true in this case?
(1) X is undergoing dissociation in water
(2) Molecular mass of X is greater than the molecular mass of Y
(3) Molecular mass of X is less than the molecular mass of Y
(4) Y is undergoing dissociation in water, while X undergoes no change
68. Which one of the following electrolytes has the same value of van't Hoff's factor (i) as that of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (if all are 100% ionized)?
(1) $\mathrm{K}_{2} \mathrm{SO}_{4}$
(2) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(3) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
(4) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
69. The number of d-electrons in $\mathrm{Fe}^{2+}(\mathrm{Z}=26)$ is not equal to the number of electrons in which one of the following?
(1) s-electrons in $\mathrm{Mg}(\mathrm{Z}=12)$
(2) p-electrons in $\mathrm{Cl}(\mathrm{Z}=17)$
(3) d-electrons in $\mathrm{Fe}(\mathrm{Z}=26)$
(4) p-electrons in $\mathrm{Ne}(\mathrm{Z}=10)$
70. The correct bond order in the following species is:
(1) $\mathrm{O}^{2+}{ }_{2}<\mathrm{O}_{2}{ }^{+}<\mathrm{O}_{2}^{-}$
(2) $\mathrm{O}^{2+}{ }_{2}<\mathrm{O}_{2}{ }^{-}<\mathrm{O}_{2}{ }^{+}$
(3) $\mathrm{O}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{2+}$
(4) $\mathrm{O}_{2}{ }^{-}<\mathrm{O}_{2}{ }^{+}<\mathrm{O}^{2+} 2$
71. The angular momentum of electron in ' d ' orbital is equal to:
(1) $\sqrt{6} h$
(2) $\sqrt{2} h$
(3) $2 \sqrt{3} h$
(4) 0 h
72. The $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}, \mathrm{AgCl}, \mathrm{AgBr}$ and AgI are, respectively, $1.1 \times 10^{-12}, 1.8 \times 10^{-10}, 5.0 \times$ $10^{-13}, 8.3 \times 10^{-17}$. Which one of the following salts will precipitate last if AgNO_{3} solution is added to the solution containing equal moles of $\mathrm{NaCl}, \mathrm{NaBr}, \mathrm{NaI}$ and $\mathrm{Na}_{2} \mathrm{CrO}_{4}$
(1) AgI
(2) AgCl
(3) AgBr
(4) AgCrO_{4}
73. Which property of colloidal solution is independent of charge on the colloidal particles?
(1) Coagulation
(2) Electrophoresis
(3) Electro-osmosis
(4) Tyndall effect
74. Which of the following statements is correct for a reversible process in a state of equilibrium?
(1) $\Delta G=-2.30 R T \log K$
(2) $\Delta \mathrm{G}=2.30 \mathrm{RT} \log \mathrm{K}$
(3) $\Delta \mathrm{G}^{0}=-2.30 \mathrm{RTlogK}$
(4) $\Delta \mathrm{G}^{\mathrm{o}}=2.30 \mathrm{RT} \log \mathrm{K}$
75. Bithional is generally added to the soaps as an additive to function as a/an:
(1) Softener
(2) Dryer
(3) Buffering agent
(4) Antiseptic
76. The electrolytic reduction of nitrobenzene in strongly acidic medium produces:
(1) P-Aminophenol
(2) Azoxybenzene
(3) Azobenzene
(4) Aniline
77. In Duma's method for estimation of nitrogen 0.25 g of an organic compound gave 40 mL if nitrogen collected at 300 K temperature and 725 mm pressure. If the aqueous tension at 300 K is 25 mm , the percentage of nitrogen in the compound is:
(1) 17.36
(2) 18.20
(3) 16.76
(4) 15.76
78. In which of the following compounds, the $\mathrm{C}-\mathrm{Cl}$ bond ionization shall give most stable carbonium ion?

(2)

(3)

(4)

79.The reaction

(1) Williamson Synthesis
(2) Williamson continuous etherification process
(3) Etard reaction
(4) Gattterman-Koch reaction
80. The reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{3}$ with HBr produces
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$
|
Br
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHCH}_{3}$
|
Br
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$

81. A single compound of the structure

is obtainable from ozonolysis of which of the following cyclic compounds
(1)

(2)

(3)

(4)

82. Treatment of cyclopentanone
 the following species?
(1) Cyclopentanonyl anion
(2) Cyclopentanonyl cation
(3) Cyclopentanonyl radical
(4) Cyclopentanonyl biradical
83. Consider the following compounds

(I)

(II)

(III)

Hyperconjugation occurs in:
(1) I only
(2) II only
(3) III only
(4) I and III
84. Which of the following is the most correct electron displacement of a nucleophilic reaction to take place
(1)

85. The enolic form of ethyl acetoacetate as below has:

(1)18 sigma bonds and 2 pi-bonds
(2)16 sigma bonds and 1 pi-bonds
(3) 9 sigma bonds and 2 pi-bonds
(4)9 sigma bonds and 1 pi-bonds
86. Given

(1)

(II)

(III)

Which of the given compounds can exhibit tautomerism?
(1) I and II
(2) I and III
(3) II and III
(4) I, II and III
87.Given

(I)

(II)

(III)

The enthalpy of hydrogenation of these compounds will be in the order as:
(1) I $>$ II $>$ III
(2) III $>$ II $>$ I
(3) II $>$ III $>$ I
(4) II $>$ I $>$ III
88. Biodegradable polymer which can be produced from glycine and aminocaproic acid is
(1) Nylon 2-nylon 6
(2) PHBV
(3) Buna-N
(4) Nylon 6, 6
89. The total number of π - bond electrons in the following structure is:

(1) 4
(2) 8
(3) 12
(4) 16
90. An organic compound ' X ' having molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ yields phenyl hydrazone and gives negative response to the lodoform test and Tollens' test. It produces npentane on reduction. ' X ' could be:
(1) pentanal
(2) 2-pentanone
(3) 3-pentanone
(4) n-amyl alcohol
91. Which one of the following matches is correct?

(1)	Phytophthora	Aseptate mycelium	Basidiomycetes
(2)	Alternaria	Sexual reproduction absent	Deuteromycetes
(3)	Mucor	Reproduction by conjugation	Ascomycetes
(4)	Agaricus	Parasitic fungus	Basidiomycetes

92. Read the following five statements (A to E) and select the option with all correct statements:
(A) Mosses and Lichens are the first organisms to colonise a bare rock
(B) Selaginella is a homosporous pteridophyte.
(C) Coralloid roots in Cycas have VAM
(D) Main plant body in bryophytes is gametophytic, whereas in pteridophytes sporophytic
(E) In gymnosperms, male and female gametophytes are present within sporangia located on sporophyte.
(1) (A),(C) and (D)
(2) (B), (C) and (D)
(3) (A),(D) and (E)
(4) (B),(C) and (E)
93. In which of the following gametophyte is not independent free living
(1) Funaria
(2) Marchantia
(3) Pteris
(4) Pinus
94. Which one of the following statements is wrong?
(1) Algin and carrageen are products of algae
(2) Agar-agar is obtained from Gelidium and Gracilaria
(3) Chlorella and Spirulina are used as space food
(4) Mannitol is stored food in Rhodophyceae
95. The guts of cow and buffalo possess
(1) Fucus spp.
(2) Chlorella spp.
(3) Methanogens
(4) Cyanobacteria
96. Male gametes are flagellated in
(1) Polysiphonia
(2) anabaena
(3) Ectocarpus
(4) Spirogyra
97.Vascular bundles in monocotyledons are considered closed because
(1) A bundle sheath surrounds each bundle
(2) Cambium is absent
(3) There are no vessels with perforations
(4) Xylem is surrounded all around by phloem
97. $\oplus \bigodot_{+}^{7} K_{(5)} \overparen{\mathrm{C}_{(5)} A_{5}} \underline{G}_{(2)}$ is the floral formula of
(1) Allium
(2) Sesbania
(3) Petunia
(4) Brassica
98. A major characteristic of the monocot root is the presence of
(1) Open vascular bundles
(2) Scattered vascular bundles
(3) Vasculature without cambium
(4) Cambium sandwiched between phloem and xylem along the radius
99. Keel is the characteristic feature of flower of
(1) Tulip
(2) Indigofera
(3) Aloe
(4) Tomato
100. Perigynous flowers are found in
(1) Guava
(2) Cucumber
(3) China rose
(4) Rose
101. Leaves become modified into spins in
(1) Opuntia
(2) Pea
(3) Onion
(4) Silk Cotton
102. The structures that are formed by stacking of organised flattened membranous sacs in the chloroplasts are
(1) Cristae
(2) Grana
(3) Stroma lamellae
(4) Stroma
103. The chromosomes in which centromere is situated close to one end are
(1) Metacentric
(2) Acrocentric
(3) Telocentric
(4) Sub-metacentric
104. Select the correct matching in the following pairs
(1) Smooth ER - Oxidation of phospholipids
(2) Smooth ER - Synthesis of lipids
(3) Rough ER - Synthesis of glycogen
(4) Rough ER - Oxidation of fatty acids
105. True nucleus is absent in
(1) Anabaena
(2) Mucor
(3) Vaucheria
(4) Volvox
106. Which one of the following is not an inclusion body found in prokaryotes?
(1) Phosphate granule
(2) Cyanophycean granule
(3) Glycogen granule
(4) Polysome
107. Transpiration and root pressure cause water to rise in plants by
(1) Pulling it upward
(2) Pulling and pushing it, respectively
(3) Pushing it upward
(4) Pushing and pulling it, respectively
108. Minerals known to be required in large amounts for plant growth include
(1) Phosphorus, potassium, sulphur, calcium
(2) Calcium, magnesium, manganese, copper
(3) Potassium, phosphorus, selenium, boron
(4) Magnesium, sulphur, iron, zinc
109. What causes a green plant exposed to the light on only one side to bend toward the source of light as it grows?
(1) Green plants need light to perform photosynthesis
(2) Green plants seek because they are phototropic
(3) Light stimulates plant cells on the lighted side to grow faster
(4) Auxin accumulates on the shaded side, stimulating greater cell elongation there.
110. In a ring girdled plant
(1) The shoot dies first
(2) The root dies first
(3) The shoot and root die together
(4) Neither root nor shoot will die
111. Typical growth curve in plants is
(1) Sigmoid
(2) Linear
(3) Stair-steps shaped
(4) Parabolic
112. Which one gives the most valid and recent explanation for stomatal movements?
(1) Transpiration
(2) Potassium influx and efflux
(3) Starch hydrolysis
(4) Guard cell photosynthesis
113. The hilum is a scar on the
(1) Seed, where funicle was attached
(2) Fruit, where it was attached to pedicel
(3) Fruit, where style was present
(4) Seed, where micropyle was present
114. Which one of the following may require pollinators, but is genetically similar to autogamy?
(1) Geitonogamy
(2) Xenogamy
(3) Apogamy
(4) Cleistogamy
115. Which one of the following statement is not true?
(1) Pollen grains are rich in nutrients, and they used in the form of tablets and syrups
(2) Pollen grains of some plants cause severe allergies and bronchial afflictions in some people
(3) The flowers pollinated by flies and bats secrete four odour to attract them
(4) Honey is made by bees by digesting pollen collected from flowers
116. Transmission tissue is characteristics feature of
(1) Hollow style
(2) Solid style
(3) Dry stigma
(4) Wet stigma
117. In ginger vegetative propagation occurs through
(1) Rhizome
(2) Offsets
(3) Bulbils
(4) Runners
118. Which of the following are the important floral rewards to the animal pollinators?
(1) Colour and large size of flower
(2) Nectar and pollen grains
(3) Floral fragrance and calcium crystals
(4) Protein pellicle and stigmatic exudates
119. How many pairs of contrasting characters in pea plants were studies by Mendel in his experiments?
(1) Five
(2) Six
(3) Eight
(4) Seven
120. Which is the most common mechanism of genetic variation in the population of a sexually reproducing organism?
(1) Transduction
(2) Chromosomal aberrations
(3) Genetic drift
(4) Recombination
121. A technique of micropropagation is
(1) Somatic hybridisation
(2) Somatic embryogenesis
(3) Protoplast fusion
(4) Embryo rescue
122. The movement of a gene from one linkage group to another is called
(1) Inversion
(2) Duplication
(3) Translocation
(4) Crossing over
123. Multiple alleles are present
(1) On different chromosomes
(2) At different loci on the same chromosome
(3) At the same locus of the chromosome
(4) On non-sister chromatids
124. Which body of the Government of India regulates GM research and safety of introducing GM organisms for public services?
(1) Bio-safety committee
(2) Indian council of agricultural research
(3) Genetic Engineering Approval committee
(4) Research committee on Genetic Manipulation
125. In BT cotton, the BT toxin present in plant tissue as pro-toxin is converted into active toxin due to
(1) Alkaline pH of the insect gut
(2) Acidic pH of the insect gut
(3) Action of gut microorganisms
(4) Presence of conversion factors in insect gut
126. The crops engineered for glyphosate are resistant/tolerant to
(1) Fungi
(2) Bacteria
(3) Insects
(4) Herbicides
127. DNA is not present in
(1) Chloroplast
(2) Ribosomes
(3) Nucleus
(4) Mitochondria
128. Which of the following enhances or induces fusion of protoplasts?
(1) Sodium chloride and potassium chloride
(2) Polyethylene glycol and sodium nitrate
(3) IAA and kinetin
(4) IAA and gibberellins
129. The UN conference of Parties on climate change in the year 2011 was held in
(1) Poland
(2) South Africa
(3) Peru
(4) Qatar
130. Vertical distribution of different species occupying different levels in a biotic community is known as
(1) Divergence
(2) Stratification
(3) Zonation
(4) Pyramid
131. In which of the following both pairs have correct combination?
(1) In situ conservation : National Park

Ex situ conservation : Botanical Garden
(2) In situ conservation : Cryopreservation

Ex situ conservation : Wildlife sanctuary
(3) In situ conservation : Seed Bank Ex
situ conservation : National Park
(4) In situ conservation : Tissue culture

Ex situ conservation : Sacred groves
133. Secondary succession takes place on/in
(1) Bare rock
(2) Degraded forest
(3) Newly created pond
(4) Newly cooled lava
134. The mass of living material at a trophic level at a particular time is called
(1) Gross primary productivity
(2) Standing state
(3) Net primary productivity
(4) Standing crop
135. In an ecosystem the rate of production of organic matter during photosynthesis is termed
(1) Net primary productivity
(2) Gross primary productivity
(3) Secondary productivity
(4) Net productivity
136. Which of the following characteristics is mainly responsible for diversification of insects on land?
(1) Segmentation
(2) Bilateral symmetry
(3) Exoskeleton
(4) Eyes
137. Which of the following endoparasites of humans does show viviparity
(1) Ancylostoma duodenale
(2) Enterobius vermicularis
(3) Trichinella spiralis
(4) Ascaris lumbricoides
138. Which of the following represents the correct combination without any exception?

	Characteristics	Class
(1)	Mammary gland; hair on body; pinnae; two pairs of limbs	Mammalia
(2)	Mouth ventral : grills without operculum; skin with placoid scales; persistent notochord	Chondrichthyes
(3)	Sucking and circular mouth; Jaws absent integument without scales; paired appendages	Cyclostomata
(4)	Body covered with feathers; skin moist and glandular; forelimbs form wings; lungs with air sacs	Aves

139. Which of the following animals is not viviparous?
(1) Flying fox (bat)
(2) Elephant
(3) Platypus
(4) Whale
140. Erythropoiesis starts in
(1) Kidney
(2) Liver
(3) Spleen
(4) Red bone marrow
141. The terga, sterna and pleura of cockroach body are joined by
(1) Cementing glue
(2) Muscular tissue
(3) Arthrodial membrane
(4) Cartilage
142. Nuclear envelope is a derivative of
(1) Smooth endoplasmic reticulum
(2) Membrane of Golgi complex
(3) Microtubules
(4) Rough endoplasmic reticulum
143. Cytochromes are found in
(1) Matrix of mitochondria
(2) Outer wall of mitochondria
(3) Cristae of mitochondria
(4) Lysosomes
144. Which one of the following statements is incorrect?
(1) A competitive inhibitor reacts reversibly with the enzyme to form an enzymeinhibitor complex
(2) In competitive inhibition, the inhibitor molecule is not chemically changed by the enzyme
(3) The competitive inhibitor does not affect the rate breakdown of the enzymesubstrate complex
(4) The presence of the competitive inhibitor decreases the Km of the enzyme for the substrate
145. Select the correct option:

	I		II
(a)	Synapsis aligns homologous chromosomes	(i)	Anaphase-II
(b)	Synthesis of RNA and protein	(ii)	Zygotene
(c)	Action of enzyme recombinase	(iii)	G2-Phase
(d)	Centromeres do not separate but chromatids move toward opposite poles	(iv)	Anaphase-I
		(v)	Pachytene

(a)
(b)
(c)
(d)
(1)
(ii)
(i)
(iii)
(iv)
(2)
(ii)
(iii) (v)
(iv)
(3)
(i)
(ii) (v)
(iv)
(4) (ii) (iii) (iv) (v)
146. A somatic cell that has just completed the S phase of its cell cycle, as compared to gamete of the same species, has
(1) Twice the number of chromosomes and twice the amount of DNA
(2) Same number of chromosomes but twice the amount of DNA
(3) Twice the number of chromosomes and four times the amount of DNA
(4) Four times the number of chromosomes and twice the amount of DNA
147. Which of the following statements is not correct?
(1) Brunner's glands are present in the submucosa of stomach and secrete pepsinogen
(2) Goblet cells are present in the mucosa of intestine and secrete mucus
(3) Oxyntic cells are present in the mucosa of stomach and secrete HCl
(4) Acini are present in the pancreas and secrete carboxypeptidase
148. Gastric juice of infants contains
(1) Maltase, pepsinogen, rennin
(2) Nuclease, pepsinogen, lipase
(3) Pepsinogen, lipase, rennin
(4) Amylase, rennin, pepsinogen
149. When you hold your breath, which of the following gas changes in blood would first lead to the urge to breathe?
(1) Falling O_{2} concentration
(2) Rising CO_{2} concentration
(3) Falling CO_{2} concentration
(4) Rising CO_{2} and falling O_{2} concentration
150. Blood pressure in the mammalian aorta is maximum during
(1) Systole of the left atrium
(2) Diastole of the right ventricle
(3) Systole of the left ventricle
(4) Diastole of the right atrium
151. Which one of the following is correct?
(1) Plasma = Blood - Lymphocytes
(2) Serum = Blood + Fibrinogen
(3) Lymph = Plasma + RBC + WBC
(4) Blood = Plasma + RBC + WBC + Platelets
152. Removal of proximal convoluted tubule from the nephron will result in
(1) More diluted urine
(2) More concentrated urine
(3) No change in quality and quantity of urine
(4) No urine formation
153. Sliding filament theory can best explained as
(1) When myofilaments slide pass each other actin filaments shorten, while Myosin filament do not shorten
(2) Actin and Myosin filaments shorten and slide pass each other
(3) Actin and Myosin filaments shorten and slide pass each other
(4) When myofilaments slide pass each other, Myosin filaments shorten, while Actin filaments do not shorten
154. Glenoid cavity articulates
(1) Clavicle with acromion
(2) Scapula with acromion
(3) Clavicle with scapula
(4) Humerus with scapula
155. Which of the following regions of the brain is incorrectly paired with its function?
(1) Medulla oblongata - Homoeostatic control
(2) Cerebellum - Language comprehension
(3) Corpus callosum - Communication between the left and right cerebral cortices
(4) Cerebrum - Calculation and contemplation
156. A gymnast is able to balance his body upside down even in the total darkness because of
(1) Cochlea
(2) Vestibular apparatus
(3) Tectorial membrane
(4) Organ of Corti
157. A chemical signal that has both endocrine and neural roles is
(1) Melatonin
(2) Calcitonin
(3) Epinephrine
(4) Cortisol
158. Which of the following does not favour the formation of large quantities of dilute urine?
(1) Alcohol
(2) Caffeine
(3) Renin
(4) Atrial-natriuretic factor
159. Capacitation refers to changes in the
(1) Sperm before fertilisation
(2) Ovum before fertilisation
(3) Ovum after fertilisation
(4) Sperm after fertilisation
160. Which of these is not an important component of initiation of parturition in humans?
(1) Increase in oestrogen and progesterone ratio
(2) Synthesis of prostaglandins
(3) Release of oxytocin
(4) Release of prolactin
161. Which of the following viruses is not transferred through semen of an infected male?
(1) Hepatitis B virus
(2) Human immunodeficiency virus
(3) Chikungunya virus
(4) Ebola virus
162. Which of the following cells during gametogenesis is normally diploid?
(1) Primary polar body
(2) Spermatid
(3) Spermatogonia
(4) Secondary polar body
163. Hysterectomy is surgical removal of
(1) Uterus
(2) Prostate gland
(3) Vas deferens
(4) Mammary glands
164. Which of the following is not sexually transmitted disease?
(1) Syphilis
(2) Acquired immune deficiency syndrome (AIDS)
(3) Trichomoniasis
(4) Encephalitis
165. An abnormal human baby with 'XXX' sex chromosomes was born due to
(1) Formation of abnormal sperms in the father
(2) Formation of abnormal ova in the mother
(3) Fusion of two ova and one sperm
(4) Fusion of two sperms and one ovum
166. Alleles are
(1) Different phenotype
(2) True breeding homozygotes
(3) Different molecular forms of a gene
(4) Heterozygotes
167. A man with blood group ' A ' marries a woman with blood group ' B '. What are all the possible blood groups of their offspring?
(1) A and B only
(2) A, B and AB only
(3) A, B, AB and O
(4) O only
168. Gene regulation governing lactose operon of E. coli that involves the lac I gene product is
(1) Positive and inducible because it can be induced by lactose
(2) Negative and inducible because repressor protein prevents transcription
(3) Negative and repressible because repressor protein prevents transcription
(4) Feedback inhibition because excess of β - galactosidase can switch off transcription
169. In sea urchin DNA, which is double stranded, 17% of the bases were shown to be cytosine. The percentages of the other three bases expected to be present in the DNA are
(1) G 34\%, A 24.5%, T 24.5%
(2) G 17\%, A 16.5\%, T 32.5\%
(3) G 17\%, A 33\%, T 33\%
(4) G 8.5\%, A 50\%, T 24.5\%
170. Which of the following had the smallest brain capacity?
(1) Homo erectus
(2) Homo sapiens
(3) Homo neanderthalensis
(4) Homo habilis
171. A population will not exist in Hardy-Weinberg equilibrium is
(1) Individuals mate selectively
(2) There are no mutations
(3) There is no migration
(4) The population is large
172. Match each disease with its correct type of vaccine:
(a) Tuberculosis
(i) harmless virus
(b) Whooping cough
(ii) Inactivated toxin
(c) Diphtheria
(iii) Killed bacteria
(d) Polio
(iv) harmless bacteria

(a)	(b)	(c)	(d)
(1) (ii)	(i)	(iii)	(iv)
(2) (iii)	(ii)	(iv)	(i)
(3) (iv)	(iii)	(ii)	(i)
(4) (i)	(ii)	(iv)	(iii)

173. HIV that causes AIDS, first starts destroying
(1) B-lymphocytes
(2) Leucocytes
(3) Helper T-lymphocytes
(4) Thrombocytes
174. To active form of Entamoeba histolytica feeds upon
(1) Erythrocytes mucosa and submucosa of colon
(2) Mucosa an submucosa of colon only
(3) Food n intestine
(4) Blood only
175. High value of BOD (biochemical oxygen demand) indicates that
(1) Water is pure
(2) Water is highly polluted
(3) Water is less polluted
(4) Consumption of organic matter in the water is higher by the microbes
176. Most animals are tree dwellers in a
(1) Coniferous forest
(2) Thorn woodland
(3) Temperate deciduous forest
(4) Tropical rainforest
177. The following graph depicts changes in two populations (A and B) of herbivores in a grassy field. A possible reason for these changes is that

(1) Both plant populations in this habitat decreased
(2) Population B competed more successfully for food than population A
(3) Population A produced more offspring than population B
(4) Population A consumed the members of population B
178. Cryopreservation of gametes of threatened species in viable and fertile condition can be referred to as
(1) In situ conservation of biodiversity
(2) Advanced ex situ conservation of biodiversity
(3) In situ conservation by sacred groves
(4) In situ cryo-conservation of biodiversity
179. Rachel Carson's famous book 'Silent spring' is related to
(1) Pesticide pollution
(2) Noise pollution
(3) Population explosion
(4) Ecosystem management
180. Which of the following is not one of the prime health risks associated with greater UV radiation through the atmosphere due to depletion of stratospheric ozone?
(1) Increased skin cancer
(2) Reduced immune system
(3) Damage to eyes
(4) Increased liver cancer
