ANALYSIS OF GATE 2018* (Memory Based)

Civil Engineering

CE ANALYSIS-2018_11-Feb_Morning

SUBJECT	No. of Ques.	Topics Asked in Paper(Memory Based)	Level of Ques.	Total Marks
Engineering Mathematics	1 Marks: 4 2 Marks: 3	Matrix Methods; Maxima and Minima	Tough	10
Engineering Mechanics	1 Marks: 0 2 Marks: 1	Trusses and Frames	Medium	2
Fluid Mechanics	$\begin{aligned} & 1 \text { Marks: } 4 \\ & 2 \text { Marks: } 3 \end{aligned}$	Fluid Properties; Fluid Statics; Boundary Layer; Flow through pipes; Hydraulic Machines; Open Channel Flow	Tough/Easy	10
Solid Mechanics	1 Marks: 1 2 Marks: 3	Simple Stress and Stain; Shear Force and Bending Moment; Stresses in Beams Deflection of Beams;	Medium	7
Construction Material and Management	$\begin{aligned} & 1 \text { Marks:0 } \\ & 2 \text { Marks: } 0 \end{aligned}$		-	-
Environmental Engineering	$\begin{aligned} & 1 \text { Marks: } 2 \\ & 2 \text { Marks: } 4 \end{aligned}$	Solid Waste Management; Air Pollution; BOD; Rapid Sand Filter	Medium	10
Geomatics Engineering	$\begin{aligned} & 1 \text { Marks: } 0 \\ & 2 \text { Marks: } 2 \end{aligned}$	Theodolite and Traversing; Leveling;	Easy	4
Geotechnical Engineering	1 Marks: 4 2 Marks: 5	Soil Classification; Permeability and Seepage; Consolidation; Compaction; Stress Analysis; Shear; Strength	Medium	14
Irrigation and Hydrology	$\begin{aligned} & 1 \text { Marks: } 1 \\ & 2 \text { Marks: } 2 \end{aligned}$	Irrigation; Hydrology	Medium/Easy	5
Reinforced Concrete Cement	1 Marks: 4 2 Marks: 2	Concrete Technology; Design of Prestressed Concrete Beams	Medium	8
Steel Structures	1 Marks: 2 2 Marks: 1	Welding Connection \& Plastic Analysis	Medium	4
Structural Analysis	$\begin{aligned} & 1 \text { Marks: } 0 \\ & 2 \text { Marks: } 1 \end{aligned}$	Deflection Of Truss; Slope And Deflection Of Structure	Medium	2
Transportation Engineering	$\begin{aligned} & 1 \text { Marks: } 3 \\ & 2 \text { Marks: } 3 \end{aligned}$	Traffic Engineering; Highway Material; Geometric Design; Airport Engineering	Medium/Easy	9
General Aptitude	1 Marks: 5 2 Marks: 5	Equations, Geometry, Vocabulary, Functions	Tough	15
Total	65			100
Faculty Feedback	Majority of the question were concept based. General Aptitude And Mathematics is tough. Core Subject Questions were 50% Medium, 30% tough and 20% easy.			

GATE 2018 Examination*

Civil Engineering

Test Date: 11/02/2018
Test Time: 9:00 AM 12:00 PM
Subject Name: Civil Engineering

General Aptitude

Q. 1 - Q. 5 Carry One Mark each.

1. Tower $A=90 \mathrm{~m}$ tall, Tower $B=140 \mathrm{~m}$ tall. They are 100 m apart. A horizontal skywalk connects the floors at 70 m in both the towers. If a tent rope connects the top of Tower A, to the bottom of Tower B, at what distance (m) from Tower A will the rope intersect the skywalk?
(A)
(B)
(C)
(D)
[Ans. *] Will update soon
2. Hama's age is 5 years more than twice of Hari's age. Suresh age is 13 years less than 10 times Hari's age. If Suresh is 3 times as old as Hema, how old is Hema?
(A) 14
(B) 17
(C) 18
(D) 19
[Ans. *] Will update soon
3. The driver applied the \qquad as soon as she approached the hotel where she wanted to take a \qquad ?
(A) Brake, Break
(B) Break, Break
(C) Brake, Brake
(D) Break, Brake
[Ans. *] Will update soon
4. It is no surprise that every society has had codes of behavior; however the nature of these codes is often \qquad ?
(A) Unpredictable
(B) Simple
(C) Expected
(D) Strict
[Ans. *] Will update soon
5. The temperature T in a room varies as a function of the outside temperature T_{0} and the number of persons in the room p, according to the relation $T=k\left(\theta p+T_{0}\right)$ where $\theta, k=$ constant. What would be the value of θ which gives the following data?

T_{o}	p	T
25	2	32.4
30	5	42

(A) 0.8
(B) 1.0
(C) 2.0
(D) 10.0
[Ans. *] Will update soon
Q.6-Q. 10 Carry Two Mark each.
6. If $\mathrm{a}_{\mathrm{n}}=\frac{1}{\mathrm{n}}-\frac{1}{\mathrm{n}+2}$ where n is an integer $(\mathrm{n}>0)$, the sum of first 50 numbers is \qquad ?
[Ans. $1+\frac{1}{2}-\frac{1}{51}-\frac{1}{52}$]
7. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ are unique numbers from 1 to 9 and in such a manner that $\mathrm{A} \times \mathrm{B} \times \mathrm{C}=$ $D \times E \times F=B \times G \times E$

A		D
B	G	E
C		F

Then $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ cannot be
(A) 4
(B) 5
(C) 6
(D) 9
[Ans. B]
8. Which of the following functions is correct for the given graph in the given ranges?

(i) $y=2 x+y$ for $-3 \leq x \leq-1$
(ii) $y=|x-1|$ for $-1 \leq x \leq 2$
(iii) $y=||x|-1|$ for $-1 \leq x \leq 2$
(iv) $\mathrm{y}=1$ for $2 \leq \mathrm{x} \leq 3$
(A) (i), (ii), (iii)
(B) (i), (ii), (iv)
(C) (i) and (iv)
(D) (ii) and (iv)
[Ans. B]
9. A fruit seller sold a basket of fruits at $12 . \% \%$ loss. Had he sold it for Rs. 108 more, he would have made a 10% gain. What is the loss in Rs. incomed by the seller?
(A) 48
(B) 52
(C) 60
(D) 108
[Ans. *]
10. The price of a wire made of a super alloy material is proportional to the square of its length. The price of 10 m length of wire is 1600 . What would be the total price of two wires of lengths 4 m and 6 m ?
(A) 768
(B) 832
(C) 1440
(D) 1600
[Ans. *]

Technical

1. \rightarrow RG 123456

RD(mm) 470465435525480610
Area of The section $\left(10^{4} \mathrm{~m}^{2}\right) 9510098808592$ Thiessen mean value in mm
[Ans. ${ }^{*}$] Will update soon
2. In a $L_{a} b$, flow expression is performed over a hydro value struct . measured
$\mathrm{Q}=0.05 \mathrm{M}^{3} / \mathrm{sV}=0.25 \mathrm{M} / \mathrm{s}$ full scale strut (30 times bigger) is subjected to discharge of $270 \mathrm{~m}^{3}$ then time scale model to full scale value is \qquad
[Ans. *] Will update soon
3. The ultimate box of a wastewater sample is estimated as 87% of COD . Con=300 mg/L , $\mathrm{k}=0.23$ day $^{-1}$ temperature co $-=1.047, \mathrm{BOD}_{3} \mathrm{Q} 27^{\circ} \mathrm{C}$
[Ans. *] Will update soon
4. Given orthogonal matrix
$Q=\left[\begin{array}{ccc}\frac{3}{7} & \frac{2}{7} & \frac{6}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{6}{7} & -\frac{3}{7}\end{array}\right]$
The inverse is $=$?
[Ans. *] Will update soon
5. At the point $x=0$, the function $f(x)=x^{3}$ has
(A) Local maximum
(B) Local minimum
(C) Both local maximum and minimum
(D) Neither local maximum and local minimum
[Ans. *] Will update soon
6. Which of the following matrix is singular =?
$\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right]\left[\begin{array}{ll}4 & 3 \\ 6 & 2\end{array}\right]$
[Ans. *] Will update soon
7. The solution at $x=1$ of the differential equation $\frac{d^{2} y}{d x^{2}}+2 \cdot \frac{d y}{d x}+y=0$ subjected to boundary condition $y(0)=1, \frac{d y}{d x}(0)=-1$ is \qquad ?

[Ans. *] Will update soon

8. The solution at $\mathrm{x}=1, \mathrm{t}=1$ of the partial differential equation,$\frac{\partial^{2} 4}{\partial \mathrm{x}^{2}}=25 \frac{\partial^{2} 4}{\mathrm{dt}^{2}}$ subjected to initial condition $n(0)=3 x, \frac{\partial u}{\partial t}(0)=3$ is \qquad
(A) 1
(B) 2
(C) 4
(D) 6
[Ans. *] Will update soon
9. The value of the integral $\int_{0}^{n} x \cos ^{2} x . d x$ is $=$?
(A) $n^{2} / 8$
(B) $n^{2} / 4$
(C) $n^{2} / 2$
(D) n^{2}
[Ans. *] Will update soon
10. A $1: 50$ model of a spillway is to be tested in lab. The discharge in prototype Spillway $=1000 \mathrm{~m}^{2} / \mathrm{sec}$.Tehe corresponding discharge to be maintained in the model?
[Ans. *] Will update soon
11. A 10 m wide rectangular channel carries a discharge of $20 \mathrm{~m}^{3} / \mathrm{sec}$ under critical condition using $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.Specific energy (in m) \qquad ?
[Ans. *] Will update soon
12. Bernoulli's equation is applicable for
(A) Viscous and compressible fluid flow
(B) In-viscous and compressible fluid flow
(C) In -viscous and in-compressible fluid flow
(D) Viscous and incompressible fluid flow
[Ans. *] Will update soon
13. A flow field is given by $u=y^{2}, v=-x y, w=0$.Value of the z-component of angular velocity (in radian per unit time) at the point ($0,-1,1$) \qquad ?
[Ans. *] Will update soon
14. In a lab, a flow experiment is performed over a hydraulic string. The measured values of discharge and velocity are $0.05 \mathrm{~m}^{3} / \mathrm{sec}$ and $0.25 \mathrm{~m} / \mathrm{sec}$. If the full scale string (30 times bigger) is subjected to a discharge of $270 \mathrm{~m}^{2} / \mathrm{sec}$,then the time scale (model to full scale) value is \qquad ?
[Ans. *] Will update soon
15. A closed tank contains 0.5 m thick layer of mercury (Special gravity=13.6) at bottom .A 20 m thick layer of water lies above the mercury layer. A 30 m thick layer of oil (Special gravity $=0.6$) lies above the water layer. The space above the oil layer contains air pressure

The gauge pressure at the bottom of tank is $196.2 \mathrm{kN} / \mathrm{m}^{2}$. The density of water $=1000 \mathrm{~kg} . \mathrm{m}^{3}$ and $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$.The value of pressure in the air space?
(A) $92.21 \mathrm{~N} / \mathrm{m}^{2}$
(B) $95.644 \mathrm{~N} / \mathrm{m}^{2}$
(C) $98.922 \mathrm{~N} / \mathrm{m}^{2}$
(D) $99.321 \mathrm{~N} / \mathrm{m}^{2}$
[Ans. *] Will update soon
16. A solid circular beam with radius of 0.25 m and length of 2 m is subjected to a twisting moment of $20 \mathrm{kN}-\mathrm{m}$, about z -axis . The shear stress component τ_{xy} at point ' M ' in C / S of the beam at a distance of 1 m from fixed end=?

(A) 0
(B) 0.51
(C) 0.815
(D) 2
[Ans. *] Will update soon
17. $y=2 \times 10^{11} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}, \mu=0.3$
if $\sigma_{z z}$ is negligibly small and assumed to be zero, then strain $\epsilon_{z z}=$?

(A) -120×10^{-6}
(B) -60×10^{-6}
(C) 0
(D) 120×10^{-6}
[Ans. *] Will update soon
18. In fillet weld, the direct shear stress and bending tensile stress $=50$ and 150 MPa . As per IS 800:2007.equivalent stress=?
[Ans. *] Will update soon
19. A column of height ' h ' with rec C / S of 2×2 has buckling load P. If C / S change to 0.5 a and height 1.5 h , then buckling load of
$\frac{P}{12}, \frac{P}{4}, \frac{P}{2}, \frac{3 P}{4}$?
[Ans. *] Will update soon
20. SSB, uniform EI, slope at P

(A) 0
(B) $\frac{M L}{9 E I}$
(C) $\frac{M L}{6 E I}$
(D) $\frac{M L}{3 E I}$
[Ans. *] Will update soon
21. Variation of water depth (y) in G.V O.C.F is given by first order differential equation/
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1-\mathrm{e}^{\frac{10}{3} \ln (\mathrm{y})}}{250-45 \mathrm{e}^{-3 \ln (\mathrm{y})}}$. Given initial conditions, $\mathrm{y}(\mathrm{x}=0), 0.8$ the depth in m of flow at downstream section at $x=1 \mathrm{~m}$ from one. Calculation step of single step Euler method is
\qquad

[Ans. *] Will update soon

22. A cantilever beam of 2 m with square section of side length 0.1 m , is loaded vertically at free end $=5 \mathrm{~mm}$. The beam is made of steel $\gamma=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$. The maximum bending stress=?
(A) 20
(B) 37.5
(C) 60
(D) 75
[Ans. *] Will update soon
23. The dimensions of a symmetrical welded I-section are shown in figure plastic section modulus (in cm^{3}) about weaker axis?

[Ans. *] Will update soon
24. $E=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{A}=10 \mathrm{~mm}^{2}$
$\mathrm{L}=1 \mathrm{~m}, \mathrm{P}=1 \mathrm{kN}$
Horizontal displacement at $\mathrm{e}(\mathrm{mm})=$?

[Ans. *] Will update soon

More Questions Update Soon

