

ANALYSIS OF GATE 2018* (Memory Based)

Civil Engineering

CE

CE ANALYSIS-2018_11-Feb_Morning

SUBJECT	No. of Ques.	Topics Asked in Paper(Memory Based)	Level of Ques.	Total Marks
Engineering Mathematics	1 Marks: 4 2 Marks: 3	Matrix Methods; Maxima and Minima	Tough	10
Engineering Mechanics	1 Marks: 0 2 Marks: 1	Trusses and Frames	Medium	2
Fluid Mechanics	1 Marks: 4 2 Marks: 3	Fluid Properties; Fluid Statics; Boundary Layer; Flow through pipes; Hydraulic Machines; Open Channel Flow	Tough/Easy	10
Solid Mechanics1 Marks: 1Simple Stress and Stain; She and Bending Moment; Stre Beams Deflection of Beams		Simple Stress and Stain; Shear Force and Bending Moment; Stresses in Beams Deflection of Beams;	Medium	7
Construction Material and Management	1 Marks:0 2 Marks: 0	- 81	-	-
Environmental Engineering	1 Marks: 2 2 Marks: 4	Solid Waste Management; Air Pollution; BOD; Rapid Sand Filter	Medium	10
Geomatics Engineering	1 Marks: 0 2 Marks: 2	Theodolite and Traversing; Leveling;	Easy	4
Geotechnical Engineering	1 Marks: 4 2 Marks: 5	Soil Classification; Permeability and Seepage; Consolidation; Compaction; Stress Analysis; Shear; Strength	Medium	14
Irrigation and Hydrology	1 Marks: 1 2 Marks: 2	Irrigation; Hydrology	Medium/Easy	5
Reinforced Concrete Cement	1 Marks: 4 2 Marks: 2	Concrete Technology; Design of Pre- stressed Concrete Beams	Medium	8
Steel Structures	1 Marks: 2 2 Marks: 1	Welding Connection & Plastic Analysis	Medium	4
Structural Analysis	1 Marks: 0 2 Marks: 1	Deflection Of Truss; Slope And Deflection Of Structure	Medium	2
Transportation Engineering	1 Marks: 3 2 Marks: 3	Traffic Engineering; Highway Material; Geometric Design; Airport Engineering	Medium/Easy	9
General Aptitude	1 Marks: 5 2 Marks: 5	Equations, Geometry, Vocabulary, Functions	Tough	15
Total	65			100
Faculty Feedback	Faculty FeedbackMajority of the question were concept based. General Aptitude AMathematics is tough. Core Subject Questions were 50% Medium, 30% tou and 20% easy.			de And % tough

GATE 2018 Examination*

Civil Engineering

Test Date: 11/02/2018

Test Time: 9:00 AM 12:00 PM

Subject Name: Civil Engineering

General Aptitude

(B)

(D)

Q.1 - Q.5 Carry One Mark each.

- 1. Tower A = 90 m tall, Tower B = 140 m tall. They are 100 m apart. A horizontal skywalk connects the floors at 70 m in both the towers. If a tent rope connects the top of Tower A, to the bottom of Tower B, at what distance (m) from Tower A will the rope intersect the skywalk?
 - (A)
 - (C)

[Ans. *] Will update soon

- 2. Hama's age is 5 years more than twice of Hari's age. Suresh age is 13 years less than 10 times Hari's age. If Suresh is 3 times as old as Hema, how old is Hema?
 - (A) 14 (C) 18 (B) 17 (D) 19

[Ans. *] Will update soon

- 3. The driver applied the _____as soon as she approached the hotel where she wanted to take a _____?
 (A) Brake, Break
 (B) Break, Break
 - (C) Brake, Brake[Ans. *] Will update soon

(D) Break, Brake

4. It is no surprise that every society has had codes of behavior; however the nature of these codes is often _____?

(A) Unpredictable(C) Expected[Ans. *] Will update soon

- (B) Simple
- (D) Strict

THE GATE ADEM

The temperature T in a room varies as a function of the outside temperature T_0 and the 5. number of persons in the room p, according to the relation $T = k(\theta p + T_0)$ where θ , k =constant. What would be the value of θ which gives the following data?

To	р	Т	
25	2	32.4	
30	5	42	
(A)	0.8		(B) 1.0
(C)	2.0		(D) 10.
[Anc	*] (Mill um	data saan

[Ans. *] Will update soon

- Q.6 Q.10 Carry Two Mark each. If $a_n = \frac{1}{n} - \frac{1}{n+2}$ where n is an integer (n > 0), the sum of first 50 numbers is 6. [Ans. $1 + \frac{1}{2} - \frac{1}{51} - \frac{1}{52}$]
- 7. If A, B, C, D, E, F, G are unique numbers from 1 to 9 and in such a manner that $A \times B \times C =$ $D \times E \times F = B \times G \times E$

Α		D		
В	G	Е		
С		F		
The	n A,	В, (C, D, E, F, G cannot be	
(A)	4			(B) 5
(C)	6			(D) 9
[An:	s. B]		

Which of the following functions is correct for the given graph in the given ranges? 8. 12

	-3 - 2 - 1 0 1 2 3 - 1 - 1 - 2 - 3 - 2 - 1 - 1 - 2 - 3 - 1 - 1 - 2 - 3 - 1 - 1 - 2 - 3 - 3 - 3 - 1 - 1 - 2 - 3 - 3 - 3 - 1 - 1 - 2 - 3 - 3 - 3 - 1 - 1 - 2 - 3 - 3 - 3 - 1 - 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	
((i) $y = 2x + y$ for $-3 \le x \le -1$	
((ii) $y = x - 1 $ for $-1 \le x \le 2$	
((iii) $y = x - 1 $ for $-1 \le x \le 2$	
((iv) $y = 1$ for $2 \le x \le 3$	
(A) (i), (ii), (iii)	(B) (i), (ii), (iv)
((C) (i) and (iv)	(D) (ii) and (iv)
	[Ans. B]	

9. A fruit seller sold a basket of fruits at 12.%% loss. Had he sold it for Rs.108 more, he would have made a 10% gain. What is the loss in Rs. incomed by the seller?

(A) 48	(B) 52
(C) 60	(D) 108
[Ans. *]	

CE

THE GATE ACADEMY A Forum of IT/ IISc Graduates

10. The price of a wire made of a super alloy material is proportional to the square of its length. The price of 10 m length of wire is 1600. What would be the total price of two wires of lengths 4m and 6m?

(A) 768	(B) 832
(C) 1440	(D) 1600
[Ans. *]	

Technical

- → RG 1 2 3 4 5 6 RD(mm) 470 465 435 525 480 610 Area of The section (10⁴ m²) 95 100 98 80 85 92 Thiessen mean value in mm_ [Ans. *] Will update soon
- 2. In a L_a b, flow expression is performed over a hydro value struct . measured $Q = 0.05 \text{ M}^3/\text{sV} = 0.25 \text{ M/s}$ full scale strut (30 times bigger) is subjected to discharge of 270 m³ then time scale model to full scale value is______ [Ans. *] Will update soon
- 3. The ultimate box of a wastewater sample is estimated as 87% of COD . Con=300 mg/L , $k = 0.23 \text{ day}^{-1}$ temperature co-=1.047, BOD₃ Q 27°C [Ans. *] Will update soon
- 4. Given orthogonal matrix

$$\mathbf{Q} = \begin{bmatrix} \frac{3}{7} & \frac{2}{7} & \frac{6}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{6}{7} & -\frac{3}{7} \end{bmatrix}$$

The inverse is =? [Ans. *] Will update soon

- 5. At the point x=0, the function $f(x) = x^3$ has
 - (A) Local maximum
 - (B) Local minimum
 - (C) Both local maximum and minimum
 - (D) Neither local maximum and local minimum
 - [Ans. *] Will update soon
- 6. Which of the following matrix is singular =?

 $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 6 & 2 \end{bmatrix}$ [Ans. *] Will update soon

☎: 080-617 66 222, ⊠info@thegateacademy.com ©Copyright reserved. Web:<u>www.thegateacademy.com</u>

5

CE

THE GATE ACADEMY AForum of IT / IISC Graduates

7. The solution at x=1 of the differential equation $\frac{d^2y}{dx^2} + 2 \cdot \frac{dy}{dx} + y = 0$ subjected to boundary condition $y(0) = 1, \frac{dy}{dx}(0) = -1$ is _____? [Ans. *] Will update soon

8. The solution at x=1, t=1 of the partial differential equation , $\frac{\partial^2 4}{\partial x^2} = 25 \frac{\partial^2 4}{dt^2}$ subjected to initial condition n(0) =3x, $\frac{\partial u}{\partial t}$ (0) = 3 is _____ (A) 1 (B) 2 (C) 4 (D) 6

[Ans. *] Will update soon

- 9. The value of the integral $\int_0^n x \cos^2 x$. dx is = ? (A) n²/8
 (B) n²/4
 (C) n²/2
 [Ans. *] Will update soon
- A 1:50 model of a spillway is to be tested in lab. The discharge in prototype
 Spillway = 1000m²/sec.Tehe corresponding discharge to be maintained in the model?
 [Ans.*] Will update soon
- A 10 m wide rectangular channel carries a discharge of 20 m³/sec under critical condition using g = 9.81m/s².Specific energy (in m) _____?
 [Ans. *] Will update soon
- 12. Bernoulli's equation is applicable for
 - (A) Viscous and compressible fluid flow
 - (B) In-viscous and compressible fluid flow
 - (C) In -viscous and in-compressible fluid flow
 - (D) Viscous and incompressible fluid flow
 - [Ans. *] Will update soon
- 13. A flow field is given by $u = y^2$, v = -xy, w = 0. Value of the z-component of angular velocity (in radian per unit time) at the point (0, -1, 1)? [Ans. *] Will update soon
- In a lab, a flow experiment is performed over a hydraulic string. The measured values of discharge and velocity are 0.05 m³/sec and 0.25 m/sec. If the full scale string (30 times bigger) is subjected to a discharge of 270 m²/sec,then the time scale (model to full scale) value is _____?

[Ans. *] Will update soon

15. A closed tank contains 0.5 m thick layer of mercury (Special gravity=13.6) at bottom .A 20 m thick layer of water lies above the mercury layer. A 30 m thick layer of oil (Special gravity=0.6) lies above the water layer. The space above the oil layer contains air pressure

THE GATE DEN

The gauge pressure at the bottom of tank is 196.2 kN/m². The density of water=1000 kg. m^3 and g = 9.81 m/s². The value of pressure in the air space?

(A) 92.21 N/m^2

(B) 95.644 N/m^2

(C) 98.922 N/m²

(D) 99.321 N/m^2

[Ans. *] Will update soon

16. A solid circular beam with radius of 0.25 m and length of 2m is subjected to a twisting moment of 20 kN-m, about z-axis . The shear stress component τ_{xy} at point 'M' in C/S of the beam at a distance of 1m from fixed end=?

[Ans. *] Will update soon

- 18. In fillet weld, the direct shear stress and bending tensile stress =50 and 150 MPa. As per IS 800:2007.equivalent stress=? [Ans. *] Will update soon
- 19. A column of height 'h' with rec C/S of 2×2 has buckling load P. If C/S change to 0.5 a and height 1.5 h, then buckling load of P P 3Pn

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{31}{4}$$

[Ans. *] Will update soon

🖀: 080-617 66 222, 🖂 info@thegateacademy.com ©Copyright reserved. Web: www.thegateacademy.com

THE GATE ACADEMY AForum of IIT / IISc Graduates

21. Variation of water depth (y) in G.V O.C.F is given by first order differential equation/ $\frac{dy}{dx} = \frac{1 - e^{\frac{10}{3}} \ln(y)}{250 - 45 e^{-3 \ln(y)}}$ Given initial conditions, y(x=0), 0.8 the depth in m of flow at downstream section at x=1m from one. Calculation step of single step Euler method is

[Ans. *] Will update soon

22. A cantilever beam of 2m with square section of side length 0.1 m, is loaded vertically at free end=5 mm. The beam is made of steel $\gamma = 2 \times 10^{11} \text{ N/m}^2$. The maximum bending stress=?

(A) 20		(B) 37.5
(C) 60	9.7	(D) 75
[Ans. *] Will update soon		

23. The dimensions of a symmetrical welded I-section are shown in figure plastic section modulus (in cm³) about weaker axis?

8

CE

THE GATE CADEM

 $E = 2 \times 10^{11} \text{ N/m}^2$ 24. $A = 10 \text{ mm}^2$ L=1m,P=1kNHorizontal displacement at e(mm)=? 2P Р С 2AE L, AE AE L

[Ans. *] Will update soon

More Questions Update Soon pa manuelle sectores de la sectores

9

CE