
ANALYSIS OF GATE 2018*(Memory Based)

Mechanical Engineering

ME

ME ANALYSIS-2018_3-Feb_Afternoon

SUBJECT	No. of Ques.	Topics Asked in Paper(Memory Based)	Level of	Total
			Ques.	Marks
Engineering	1 Marks: 5	Random Variable, Complex Variable, Divergence, Complementary Function, Determinant, Variable Separable Method, Fourier Series	Easy	13
Mathematics	2 Marks: 4		5	
Engineering	1 Marks:1	Slider Crank Mechanism, Collision	Medium	3
Mechanics	2 Marks: 1		Meuluiii	3
Mechanics of	1 Marks: 2	Columns, Simple Stress and Strain	Medium	8
Materials	2 Marks: 3			
Theory Of	1 Marks: 2	Gear Strain, Vibration, Torsion, Cams	Medium	8
Machines	2 Marks: 3			
Machine Design	1 Marks: 1	Bearing Capacity, Breaks	Easy	3
	2 Marks: 2			
Fluid Mechanics	1 Marks: 2	Fluid Properties, Flow through pipes	Medium	8
	2 Marks: 3		Meululli	υ
Heat Transfer	1 Marks: 1	Radiation, Convection	Easy	5
	2 Marks: 2		Lasy	5
Thermodynamics	1 Marks: 2	Ideal Gas, IC Engine, Vapour compression cycle, Refrigeration	Medium	12
	2 Marks: 5			
Manufacturing	1 Marks: 7	Milling, Metal Cutting, Forming, EDM	Tough	19
Engineering	2 Marks: 6			
Industrial	1 Marks: 2	Inventory Management, Linear Programming	Tough	6
Engineering	2 Marks: 2			
General Aptitude	1 Marks: 5	Geometry, TSD, Functions, Grammar, Numbers, Work, inference	Easy	15
	2 Marks: 5			
Total	65			100
Faculty Feedback	Majority of the question were concept based. General Aptitude And			
	Mathematics is Very Easy. Core Subject Questions were 50% easy, 30%			
	medium and 20% tough.			

GATE 2018 Examination*(Memory Based)

Mechanical Engineering

Test Date: 3-Feb-2018

Test Time: 2:00 PM 5:00 PM

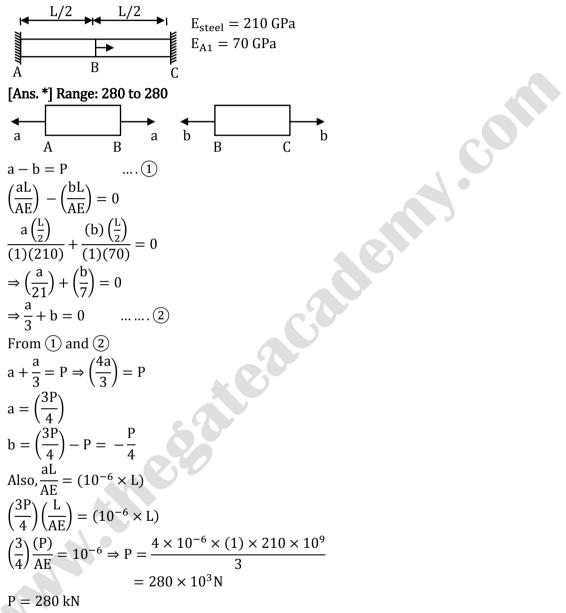
Subject Name: Mechanical Engineering

General Aptitude

6.204

1. A contract is to be completed in 52 days and 125 identical robots where employed each operated for 7 hr/day. After 39 days, $\left(\frac{5}{7}\right)^{\text{th}}$ of work was completed. How many additional robots would be required to complete the work on time. If each robot is now operational for 8 hrs a day **[Ans. 7]**

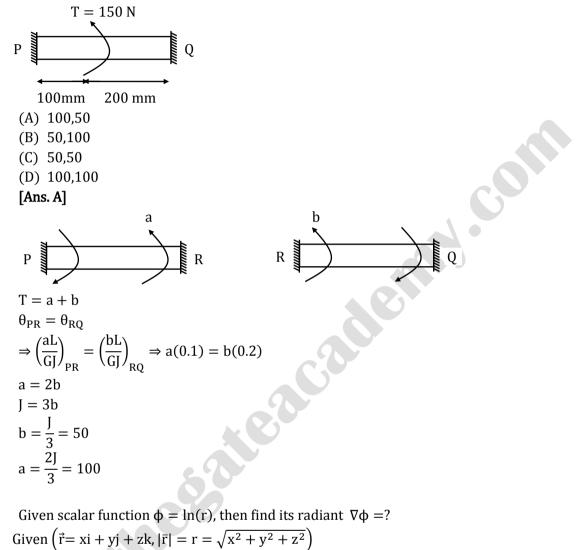
Complete the Series:
 BC FGH LMNO_____
 [Ans. TUVWX]


- 3. $\frac{1}{1 + \log_{u} vw} + \frac{1}{1 + \log_{v} wu} + \frac{1}{1 + \log_{w} uv} =?$
[Ans. 1]
- 4. Perimeter of circle, square and equilateral triangle are equal then
 - (A) Area of circle will be maximum.
 - (B) Area of square will be maximum.
 - (C) Area of equilateral triangle will be maximum.
 - (D) All area will be equal.
 - [Ans. A]
- The dress _____ her, that they all _____ her for appearance.
 [Ans. A] Complemented, Complimented
- A wire bent over square has area of 1936 m². Wire is cut into two parts a and b such that a = 3b. Now' a' is bent over square and' b' bent over circle. Find out the sum of area of square and circle
 [Ans *]Pange: 1243 to 1243

[Ans. *]Range: 1243 to 1243

Technical

1. A bimetallic cylindrical bar of cross sectional area $1m^2$ is made by steel and aluminum as shown. To maintain axial strain 10^{-6} in both steel and aluminum $(10^{-6}$ tensile in steel and 10^{-6} compressive in Al) The force P = ____kN.



2. Minimum axial compressive load required to initiate buckling for a pinned –pinned slender column with bending stiffness EI and length L is _____

Ans:
$$\frac{\pi^2 EI}{L^2}$$

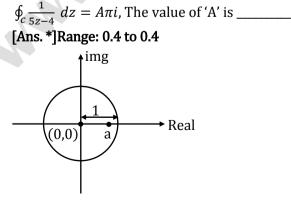
3. If the bar is loaded with a torsional load of 150 Nm as shown. Find the torsional reaction at P and Q

(A) r (B) $\frac{\vec{r}}{|r|}$

4.

- (C) $\frac{\vec{r}}{\vec{r}.\vec{r}} = \frac{\vec{r}}{r^2}$ (D) $\frac{\vec{r}}{|r|^3}$ [Ans. C]
- 5. A wire bent over square has area of 1936 m², wire is cut into two parts a and b such that a=3s. Now 'a' is bent over square and 's' is bent over circle.
 Find out the sum of area of square and circle
 [Ans. *] Range: 1243 to 1243

5


ME

THE GATE ACADEMY AForum of IT/ Its Graduates

- 6. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 1 \end{bmatrix}$ then $det(A^{-1}) =$ _____ [Ans. *] Range: 0.25 to 0.25 $|A^{-1}| = \frac{1}{|A|} = \frac{1}{4} = 0.25$ $|A| = 1 \times 4 \times 1 = 4$
- 7. For an ordinary DE $y^3 \frac{dy}{dx} + x^3 = 0$ and y(0) = 1 then y(-1) =_____ [Ans. *]Range: 1.4 to 1.5
- 8. For a Fourier series $f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx)$ the value of co-efficient of function $f(x) = \cos^2 x$ in $\begin{bmatrix} 0 & \pi \end{bmatrix}$ is _____ $\begin{bmatrix} Ans. a_0 = \frac{1}{2} \cdot a_2 = \frac{1}{2} \end{bmatrix}$
- 9. The divergence of vector field $\vec{u} = e^x (\cos yi + \sin yi)$ is [Ans. *] $2e^x \cos y$ Divergence of vector field $\vec{u} = \nabla$. \vec{u} $\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$ $\nabla = \vec{u} = e^x \cos y + e^x \cos y$ $= 2e^x \cos y$
- 10. Consider a function 'u' which depends on position 'x' and time 't'. The partial differential equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ is known as
 - (A) Wave equation
 - (B) Heat equation
 - (C) Laplace equation
 - (D) Energy equation

[Ans. B]

11. For a counter clockwise integration around a unit circle centered at origin

THE GATE ACADEMY

$$\oint_{c} \frac{f(z)}{(z-a)} dz = 2\pi i f(a)$$

$$\oint_{c} \frac{\left(\frac{1}{5}\right)}{\left(z-\frac{4}{5}\right)} dz = 2\pi i f(a) f(z) = \frac{1}{5}$$
Here $a = \frac{4}{5}$

$$= 2\pi i \left(\frac{1}{5}\right)$$

$$= \left(\frac{2}{5}\right)\pi i$$

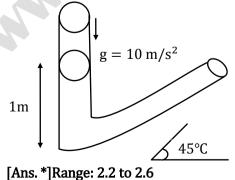
$$A = \frac{2}{5} = 0.4$$

12. $y^3 \frac{dy}{dx} + x^3 = 0$, given y(0) = 1, then find y(-1) = 0[Ans. *]Range: 0 to 0 $y^3 dy = -x^3 dx$ Apply integration on both sides $\int y^3 \, dy = -\int x^3 \, dx$

$$\frac{y^4}{4} = -\frac{x^4}{4} + c$$

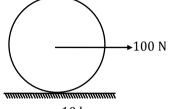
$$\frac{y^4 + x^4}{4} = c$$

$$\Rightarrow y(0) = 1$$


$$\frac{1+0}{4} = c \Rightarrow = \frac{1}{4}$$

$$\frac{x^4 + y^4}{4} = \frac{1}{4}$$

$$x^4 + y^4 = 1$$


$$y(-1) = 1 - 1 = 0$$

A ball is dropped from a height of 1m in a friction less tube. If the tube profile is 13. approximated as straight line the total distance travelled by the ball is _____ [Neglecting the curved position]

14. A disc of mass 10 kg and radius 1 m is acted upon by a 100N force at the centre as shown Find the linear acceleration of center of the disc?

m = 10 kg

[Ans. *]Range: 6.4 to 7

- 15. Let x_1 and x_2 be two independent exponential distribution R.V with mean 0.5 and 0.25 respectively. Then $y = min(x_1 x_2)$ is
 - (A) Exponential distribution with mean is 1/6
 - (B) Exponential distribution with mean is 2
 - (C) Normal distribution with mean is $\frac{3}{4}$
 - (D) Normal distribution with mean is 1/6

[Ans. A]

- 16. The problem of maximizing $z = x_1 x_2$ subject to constraints
 - $x_1+x_2 \leq 10; x_1 \geq 0 \text{ and } x_2 \leq 5 \text{ has}$
 - (A) No solution
 - (B) One solution
 - (C) Two solution
 - (D) More solution

[Ans. B]

- 17. The peak wave length of radiation emitted by a black body at a temperature of 2000 k is 1.45 μm. If the peak wave length of emitted radiation changes to 2.90 μm, then the temperature (in k) of the black body is _____ (k) [Ans. *]Range: 1000 to 1000
- 18. In a steam power plant steam is condensed in a condenser at 30°C. The cooling water enters the condenser at 30°C. The cooling water enters the condenser at 14°C and leaves at 12°C. If the total surface area of tubes is $50m^2$ and overall heat transfer co-efficient is $2000 \text{ w/m}^2\text{k}$ then heat transfer to the condenser is _____

[Ans. *] Updating soon

More Questions Update Soon