Disclaimer - This data may not be accurate as it is based on memory of test takers. This will be a precise tool for students to understand the type of questions to expect in Numerical Ability, Verbal Ability and Mathematics Sections in upcoming slots.

We wish you All the Very Best for your GATE-2018.

Section-I: General Ability

1. Seven machines take 7 minutes to make 7 identical toys. At the same time, how many minutes would it take for 100 machines to make 100 toys?
(A) 1
(B) 7
(C) 100
(D) 700

Key: (B)
Sol: $\quad \frac{7 \times 7}{7}=\frac{100 \times \mathrm{T}_{2}}{100}$
$\Rightarrow \mathrm{T}_{2}=7$ minutes
2. "Her \qquad should not be confused with miserliness she is every willing to assist those in need" The word that best fills the bank in the above sentence is
(A) cleanliness
(B) punctuality
(C) frugality
(D) greatness

Key: (C)
Sol: The sentence explains that the person spoken of is not miserly, since she is quite prepared to be generous. So for the sentence to make sense, the word filling the blank has to be something that is consistent with generosity and yet might, by those without a full understanding of her behaviour, be mistaken for miserliness. The words "frugality" and thrift fulfill this requirement and yield two sentences that are alike in meaning. Thus the correct answer is frugality.
3. A number consists of two digits. Then sum of the digits is 9 . If 45 is subtracted from the number, its digits are interchanged. What is the number?
(A) 63
(B) 72
(C) 81
(D) 90

Key: (B)
Sol: Let number be 'xy'
Given $x+y=9$

$\Rightarrow(10 x+x y)-45=10 y+x$
$\Rightarrow 9 x-9 y=45$
$\Rightarrow \mathrm{x}-\mathrm{y}=5$
solving (i) \& (ii) $\Rightarrow \mathrm{x}=7, \mathrm{y}=2$
Required number $=72$
4. Going by the \qquad that many hands make light work, the school \qquad involved all the students in the task". The words that best fill the blanks in the above sentence are
(A) Principle, Principal
(B) Principal, Principle
(C) Principle, Principle
(D) Principal, Principal

Key: (A)
5. A rectangle becomes a square when its length and breadth are reduced by $10 \mathrm{~m} \& 5 \mathrm{~m}$ respectively. During this process, the rectangle losses $650 \mathrm{~m}^{2}$ of area. What is the area of the original rectangle (in sq.m)?
(A) 1125
(B) 2250
(C) 2924
(D) 4500

Key: (B)
Sol:

Let us consider original area of rectangle $\mathrm{A}=\ell \mathrm{b}$

For square all sides are equal
$\ell-10=b-5$
$\ell-b=5$

By the given condition
A $-650=$ Area of square
$\mathrm{A}-650=(\ell-10)(\mathrm{b}-5)$
$\mathrm{A}-650=\ell \mathrm{b}-10 \mathrm{~b}-5 \ell+50$
$\mathrm{A}-650=\mathrm{A}-10 \mathrm{~b}-5 \ell+50$
$2 b+\ell=140$
By solving (1) \& (2)
$\ell=\frac{150}{3}, \quad b=\frac{135}{3}$
Area of rectangle $\mathrm{A}=\ell \times \mathrm{b}=\frac{150}{3} \times \frac{135}{3}=2250 \mathrm{~m}^{2}$
6. Given that $\mathrm{a}+\mathrm{b}$ are integers and $\mathrm{a}+\mathrm{a}^{2} \mathrm{~b}^{3}$ is odd.

Which one of the following statements is correct?
(A) $a \& b$ are both odd
(B) $\mathrm{a} \& \mathrm{~b}$ are both even
(C) a is even \& b is odd
(D) a is odd and b is even

Key: (D)
Sol: By verifying options
Let us consider $\mathrm{a}=1, \mathrm{~b}=2$
$a+a^{2} b^{3}=1+1^{2} \times 2^{3}=9$ i.e., odd
Only this condition is valid.
7. Consider the following three statements
i. Some roses are red
ii. All red flowers fade quickly
iii. Some roses fade quickly

Which of the following statements can be logically inferred from the above statements?
(A) If (i) true \& (ii) false, then (ii) false
(B) If (i) true \& (ii) false, then (iii) true
(C) If (i) \& (ii) are true, then (iii) true
(D) If (i) \& (ii) false, then (iii) false
8. Which of the following functions describe the graph shown below figure

(A) $y=||x|+1|-2$
(B) $y=||x|-1|-1$
(C) $y=||x|+1|-1$
(D) $y=||x|-1|-1 \mid$

Key: (B)
Sol: \quad Step (1)
$\mathrm{y}=|\mathrm{x}|$

Step (2)
$\mathrm{y}+1=|\mathrm{x}|$
(or)
$y=|x|-1$

Step (3)
$y=||x|-1|$

Step (4)
$\mathrm{y}+1=|\mathrm{x}|-1 \mid$
(or)
$y=||x|-1|-1$

9. Form the time the front of a trains enters a platform, it takes 25 sec for the buck of the train to leave the platform, while travelling at a constant speed of $54 \mathrm{~km} / \mathrm{h}$. At the same speed, it takes 14 sec to pass a man running at $9 \mathrm{~km} / \mathrm{h} \mathrm{m}$ the same direction as the train. What is the length of the train and that of the platform in meters respectively?
(A) $210 \& 140$
(B) $162.5 \& 187.5$
(C) $245 \& 130$
(D) $175 \& 200$

Key: (D)
Sol: Let Train length $=x$

$$
\text { Platform length }=\mathrm{y}
$$

$\{x+y\}=\{25\} \times\left(54 \times \frac{5}{18}\right)=375$
$\stackrel{\text { Distance }}{\downarrow}=$ Time $\times \underset{\text { Speed }}{\downarrow}$
also, $\frac{x}{\substack{(54-9) \times \frac{5}{18} \\ \downarrow}}=14$
Relative speed
$\Rightarrow \mathrm{x}=175$
$\Rightarrow \mathrm{y}=200$
10. For integers a, b \& c what would be the minimum \& maximum values respectively of $\mathrm{a}+\mathrm{b}+\mathrm{c}$ if $\log |a|+\log |b|+\log |c|=0$?
(A) $-3 \& 3$
(B) $-1 \&-1$
(C) $-1 \& 3$
(D) $1 \& 3$

Key: (A)
Sol: \quad Given $\log |a|+\log |b|+\log |c|=0$
$\Rightarrow \log _{\mathrm{e}}|\mathrm{a}||\mathrm{b}||\mathrm{c}|=0$
$\Rightarrow|a||b| c \mid=1$
Minimum value $=-1-1-1=-3$
Maximum value $=1+1+1=3$

Section-II

1. The height (in mm) for a 125 mm sine bar to measure a taper of $27^{\circ} 32^{\prime}$ on a flat work piece is
\qquad . (correct to 3 decimals)
2. A six faced fair dice is rolled 5 times. The probability (in \%) of obtaining "ONE" at least four times is
(A) 33.3
(B) 3.33
(C) 0.33
(D) 0.0033

Key: (C)
Sol: $\quad n=5, p=P(1)=\frac{1}{6}$
$\mathrm{q}=\mathrm{P}(\operatorname{not} 1)=1-\frac{1}{6}=\frac{5}{6}$
By Binomial distribution
$P(x \geq 4)=P(x=4)+P(x=5)$

$$
=5 \mathrm{C}_{4}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{5-4}+5 \mathrm{C}_{5}\left(\frac{1}{6}\right)^{5}\left(\frac{5}{6}\right)^{5-5} \cong 0.33 \%
$$

3. The rank of the matrix $\left[\begin{array}{rrr}-4 & 1 & -1 \\ -1 & -1 & -1 \\ 7 & -3 & 1\end{array}\right]$ is
(A) 1
(B) 2
(C) 3
(D) 4

Key: (B)
Sol: Let $A=\left[\begin{array}{rrr}-4 & 1 & -1 \\ -1 & -1 & -1 \\ 7 & -3 & 1\end{array}\right]$
$|\mathrm{A}|=-4(1-3)-1(-1+7)-1(3+7)=0$
Consider a submatrix, $\left|\begin{array}{cc}-4 & 1 \\ -1 & -1\end{array}\right|_{2 \times 2}=4+1=5 \neq 0$

$$
\Rightarrow \text { Rank of } \mathrm{A}=2
$$

4. Four red balls, four green balls and four blue balls are put in a box. Three balls are pulled out of the box at random one after another \qquad replacement. The probability that all the three balls are red is
(A) $\frac{1}{72}$
(B) $\frac{1}{55}$
(C) $\frac{1}{36}$
(D) $\frac{1}{27}$

Key (B)
Sol: 4R
4G
4B
Required probability $=\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}=\frac{1}{55}$
5. According to the mean value theorem, for a continuous function $f(x)$ in the interval $[a, b]$, there exists a value ξ in this interval such that $\int_{a}^{b} f(x) d x=$
(A) $f(\xi)(b-a)$
(B) $f(b)(\xi-a)$
(C) $f(a)(b-\xi)$
(D) 0

Key: (D)
Sol: By Mean Value Theorem,
$f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}$
$\Rightarrow \int_{a}^{b} f(x) d x=0$
6. $\mathrm{F}(\mathrm{z})$ is a function of the complex variable $\mathrm{z}=\mathrm{x}+\mathrm{y}$ given by $\mathrm{F}(\mathrm{z})=\mathrm{iz}+\mathrm{ke}(\mathrm{z})+\operatorname{Im}(\mathrm{z})$.

For what value of ' k ' will $\mathrm{F}(\mathrm{z})$ satisfy the Cauchy-Riemann equations?
(A) 0
(B) 1
(C) -1
(D) y

Key: (B)
Sol: $\quad \mathrm{F}(\mathrm{z})=\mathrm{iz}+\mathrm{k} \operatorname{Re}(\mathrm{z})+\mathrm{i} \operatorname{Im}(\mathrm{z})$

$$
\begin{aligned}
& =i(x+i y)+k x+i y \\
& =i x-y+k x+i y \\
& =\underline{\underline{(k x-y)}}+\frac{i(x+y)}{y}
\end{aligned}
$$

By Cauchy-Riemann equations $u_{x}=v_{y} \& u_{y}=-v_{x}$

$$
\Rightarrow \mathrm{k}=1
$$

Subject wise Analysis-

ME-2018 Gate Analysis			
	$\mathbf{1}$ Mark	2 Marks	Total
Engineering Mechanics	0	2	2
Strength of Materials	4	5	9
Fluid Mechanics	3	4	7
Design of Machine Elements	2	2	4
Theory of Machines	2	3	5
Manufacturing	6	4	10
Industrial Engineering	1	2	3
Heat Transfer	0	1	1
Thermodynamics	2	3	5
Engineering Mathematics	5	4	9

GATE-2018 Paper was more or less in same line with GATE - 2017 paper. There was some changes in weightage across sections. This year we saw Strength of Materials had more questions than last year. Students of other streams can expect such changes in their streams as well. We expect cutoff to remain same like GATE-2017.

